8.3 Evaluating Logarithms

A Specific Logarithms	B Evaluating Logarithms
The logarithm to the base 10 is called <i>decimal</i> or <i>common</i> logarithm. We use the shortcut:	Use the <i>exponential-logarithmic conversion</i> to evaluate a logarithm.
$\log_{10} x = \log x$	$y = b^x \iff x = \log_b y$
The logarithm to the base	
$e = 1 + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \dots \cong 2.71828$	
is called the natural logarithm. We use the shortcut:	
$\log_e x = \ln x$	
Ex 1. Use the exponential-logarithmic conversion to evaluate each logarithm:	Ex 2. Use the exponential-logarithmic conversion to evaluate each logarithm:
a) log10	a) log ₂ 128
b) log1	b) $\log_{1/e} \sqrt{e}$
c) log0.01	c) log ₅ 625
d) $\ln e^{-3/2}$	d) $\ln \frac{1}{\sqrt[3]{e}}$
e) $\log \sqrt{10}$	e) $\log_{1/2} \sqrt[3]{1024}$
	f) $\log_{\sqrt{2}} \sqrt[5]{0.25}$
f) $\ln \sqrt[3]{e^5}$	
C Technology	Ex 3. Use technology to evaluate:
Most scientific calculators have the key to	a) ln7
compute the common (decimal) logarithm and the head key to compute the natural logarithm.	b) log 5
Some scientific calculators have the $\log x$ key to compute logarithms to any base. If not, change the base according to:	c) $\log_2 3$
$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$	

Reading: Nelson Textbook, Pages 459-465 **Homework**: Nelson Textbook, Page 466: #4, 5, 6, 9, 10, 12, 17, 19, 20, 21