8.3 Evaluating Logarithms

A Specific Logarithms

The logarithm to the base 10 is called decimal or common logarithm. We use the shortcut:

$$
\log _{10} x=\log x
$$

The logarithm to the base
$e=1+\frac{1}{1}+\frac{1}{1 \times 2}+\frac{1}{1 \times 2 \times 3}+\ldots \cong 2.71828$
is called the natural logarithm. We use the shortcut:

$$
\log _{e} x=\ln x
$$

Ex 1. Use the exponential-logarithmic conversion to evaluate each logarithm:
a) $\log 10$
b) $\log 1$
c) $\log 0.01$
d) $\ln e^{-3 / 2}$
e) $\log \sqrt{10}$
f) $\ln \sqrt[3]{e^{5}}$

C Technology

Most scientific calculators have the ${ }^{\log }$ key to compute the common (decimal) logarithm and the key to compute the natural logarithm.

Some scientific calculators have the ${ }^{\text {log.0. }}$ key to compute logarithms to any base. If not, change the base according to:

$$
\log _{b} x=\frac{\log x}{\log b}=\frac{\ln x}{\ln b}
$$

B Evaluating Logarithms

Use the exponential-logarithmic conversion to evaluate a logarithm.

$$
y=b^{x} \Leftrightarrow x=\log _{b} y
$$

Ex 2. Use the exponential-logarithmic conversion to evaluate each logarithm:
a) $\log _{2} 128$
b) $\log _{1 / e} \sqrt{e}$
c) $\log _{5} 625$
d) $\ln \frac{1}{\sqrt[3]{e}}$
e) $\log _{1 / 2} \sqrt[3]{1024}$
f) $\log _{\sqrt{2}} \sqrt[5]{0.25}$

Ex 3. Use technology to evaluate:
a) $\ln 7$
b) $\log 5$
c) $\log _{2} 3$

Reading: Nelson Textbook, Pages 459-465
Homework: Nelson Textbook, Page 466: \#4, 5, 6, 9, 10, 12, 17, 19, 20, 21

